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ABSTRACT 

Deep learning neural network techniques have been widely applied to medical radiological imaging 

diagnostics and have been proven to exceed the accuracy rates of highly trained radiologists.  

Numerous deep learning architectures have been applied to this task. Specifically, Convolutional 

Neural Networks (CNNs) have been widely applied and have demonstrated excellent performance 

characteristics.  More recently, Capsule Networks (Capsnet) have managed to improve on the already 

stellar performance of CNNs by overcoming some of their weaknesses, such as pose and image 

transformation sensitivity. However, modifications to the Capsule Network can improve performance 

characteristics even further.  The originally proposed Capsule Network utilizes convolutional 

techniques typical of CNNs in the initial layers of the network.  By replacing the convolutional layers 

with dense layers, the Dense Capsule Network (DCNET) preserves more of the spatial image 

information which improves the accuracy of the network.  In this paper the DCNET is applied to the 

problem of diagnosing pneumonia in ChestX-ray14, which is a publicly available chest X-ray dataset, 

consisting of over 100,000 radiological chest images capturing 14 distinct diseases.  Diagnostic 

performance of DCNET is compared to that of CNNs, Capsnet, as well as that of expert radiologists. 

 

Keywords: Automated Medical Diagnostics, Capsule Neural Network, DCNET, Pneumonia, X-Ray, 
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INTRODUCTION 

Machine learning has been shown to exceed the diagnostic accuracy of trained medical 

personnel over many medical domains.  Data from medical diagnostic tools such as X-ray, 

MRI, CT, and EKG have trained deep learning algorithms, and have been shown to effectively 

detect and diagnose a wide range of diseases[1][2][3][4].  In this paper we will focus on the 

application of machine learning to the classification of pneumonia in pediatric X-ray images.  

 

Viruses, bacteria, chemicals, or fungi can all trigger the human biologic inflammatory 

response to an infection which is diagnosed as pneumonia.  Diffusion capacity drops and in 

turn the blood oxygenation levels decrease due to fluids or cells displacing the gas capacity of 
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lung alveoli. This increase in alveolar fluids can be detected by chest X-rays due to the 

increased lung sectional density. In 2019, more than 2.5 million people died from pneumonia 

and is the primary cause of mortality in young juveniles globally. Pneumonia is more common 

in developing countries suffering from a deficiency of medical facilities and increased 

environmental pollution[5]. Developed countries don’t escape the high occurrence and costs 

of this disease, since pneumonia is the most common reason for disease related hospitalization 

in the US. 

 

Pneumonia diagnosis requires a trained radiologist to visually interpret an image from an 

upper chest X-ray. Availability of trained radiologists is an issue, especially developing 

countries or even in remote areas of the US. The World Health Organization (WHO) has 

estimated that there is a global shortage of 4.3 million health professionals[6]. Also, one study 

revealed that 72 percent of pneumonia patients were misdiagnosed with pneumonia following 

a hospital re-admission[7].  In this paper we will explore machine learning techniques applied 

to chest X-ray images to automate pneumonia diagnosis, which could serve as a proxy for 

trained personnel in remote areas, or as a tool to improve diagnostic accuracy. 

 

Current research has concentrated heavily on convolutional neural networks (CNNs) and 

deep learning neural networks (DNNs) to perform diagnostic classifications[8].  Improved 

networks such as Capsnet, exceed the impressive performance of older CNN networks. 

Techniques to increase the accuracy of Capsnet will be explored herein. 

CONVOLUTIONAL NEURAL NETWORKS  

Convolutional Neural Networks have multiple layers which are composed of two basic 

types: convolutional and pooling.  Convolutional layers implement ‘kernels’: small square 

matrices that are convoluted over an image used to enhance edges, perform blurring, 

sharpening, embossing, etc. Using backpropagation, the network learns the optimal kernel 

parameters to detect the features in the image data[9]. The pooling layer reduces each kernel 

output single value which decreases the data content layer to layer. Unfortunately, this data 

reduction discards important information contained in the image.  It has been shown that 

pooling causes features in an image to lose important spatial relationships. 

As a result of this data loss, CNNs are sensitive to simple 2D affine transformations such as 

scale, translation, rotation, reflection, and skew. There for a small shift or size variation in an 

image could result in a misclassification. These networks are trained on augmented data in an 

attempt to prevail over this issue. Unfortunately, augmentation can dramatically increase the 

effective training dataset size and therefore causes a corresponding increase in the training 

time.   
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To overcome these drawbacks of CNNs, we introduce the Capsule Neural Network. The 

Capsule Neural Network is an innovative approach to deep learning neural networks recently 

introduced by Geoffrey Hinton, who is considered one of the “Godfathers of Deep Learning."   

CAPSULE NEURAL NETWORKS 

There are two basic parts to the Capsule neural networks (Capsnet): the encoder and the 

decoder. 

A. The Encoder 

 

The first two layers of the encoder are composed of two convolutional layers which are 

identical to those in a CNN. Where Capsule networks differ significant from CNNs is that 

layers use vectors instead of scalar values.  These vectors are weighted according to the 

following formula:  

 

û𝑗𝑖 = 𝑊𝑖𝑗𝑢𝑖 

Vector 𝑢𝑖  is the output of capsule i which is multiplied by the weight matrix 𝑊𝑖𝑗 to create 

the vector 𝑊𝑖𝑗. This vector is the output for the next higher j level capsule. Capsule networks 

implement a connection method known as ‘routing by agreement.’ Capsules in each layer try 

to predict the output of the next higher layer.  The better the accuracy of the prediction, or 

correlation, the more the capsules are connected through the ‘coupling coefficient’ 𝑐𝑖𝑗 . The 

output vector û𝑗𝑖  is multiplied by this coupling coefficient. This formula is as follows:  

 

𝑠𝑗 = ∑ 𝑐𝑖𝑗

𝑖

û𝑗𝑖 

 

where 𝑠𝑗   is the input of capsule j to the next higher layer, and 𝑐𝑖𝑗  is obtained using the 

following softmax formula:  

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑖𝑗) = 𝑐𝑖𝑗 =
𝑒𝑏𝑖𝑗

∑ 𝑒𝑏𝑖𝑘𝑘
   

 

here variable 𝑏𝑖𝑗 is a scalar reflecting the strength of the connection between capsules i and j.  

Parameter  𝑏𝑖𝑗 starts out at zero, meaning there is no effective connection between the layers.  

The softmax function enhances the largest values and suppresses values which are 

significantly below the maximum value, while scaling the vector such that the outputs add up 

to 1. 
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Classic neural networks implement non-linear activation function such as ReLu or the 

sigmoid function, but in order to operate on vectors instead, the Capsule network implements 

a squashing function: 

𝑠𝑞𝑢𝑎𝑠ℎ(𝑠𝑗) =  𝑣𝑗 =
||𝑠𝑗||2

1 + ||𝑠𝑗||2
 

𝑠𝑗

||𝑠𝑗||
 

 

where 𝑣𝑗  is the final output of capsule j. This formula normalizes the vector components to the 

range of zero to one[10]. This function produces a curve that resembles the upper half of the 

sigmoid function when viewed from 2 dimensions. The probabilities 𝑏𝑖𝑗 from the softmax(𝑏𝑖𝑗) 

function must be updated using the dot product of 𝑣𝑗  and û𝑗𝑖. 

 bij= bij+v
j
∙ûji  

 

This equation is the key to routing by agreement because the greater the alignment of the 

two vectors the more the coupling coefficient is increased since it is based on 𝑏𝑖𝑗. 

 

The encoder portion of the network uses the following margin loss function  

 

      𝐿𝑘 = 𝑇𝑘max (0, 𝑚+ − ||𝑣𝑘||)2  

            + 𝜆(1 − 𝑇𝑘)max (0, ||𝑣𝑘|| − 𝑚−)2 

 

The hyperparameters λ, 𝑚+, and   𝑚− are assigned the values 0.5, 0.1, and 0.9 respectively.  

Now when a category of class k is present, then 𝑇𝑘 = 1.  The total loss is ∑ 𝐿𝑘𝑘  which is the 

sum of the loss function for to each of the capsules k. 

 

The number of capsules in the last layer of the encoder match the number of categories in 

the dataset. In this case, our dataset has two output categories: normal and pneumonia. 

Therefore, there are two last layer capsules in the network.  These two capsules then connect 

to the encoder section of the Capsule network. 

 

 

Table 1. Pseudo-Code for Dynamic Routing 

Dynamic routing function 

 

Routing( ûji, r, l) 

      foreach capsule i in layer l  

           foreach capsule j in layer (l + 1) 

        𝑏𝑖𝑗 ← 0 

foreach r  

    foreach capsule i in layer l 

          𝑐𝑖 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏𝑖𝑗) 
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     foreach capsule j in layer (l + 1) 

          𝑠𝑗 = ∑ 𝑐𝑖𝑗𝑖 û𝑗𝑖  

           foreach capsule j in layer (l + 1) 

              𝑣𝑗  ← 𝑠𝑞𝑢𝑎𝑠ℎ(𝑠𝑗)  

      foreach capsule i in layer l 

          foreach capsule j in layer (l + 1) 

            𝑏𝑖𝑗 ←  𝑏𝑖𝑗 + 𝑣𝑗 ∙ û𝑗𝑖    

          return 𝑣𝑗  

 

 

B. The Decoder 

 

The decoder is composed of fully connected network layers whose final output matches the 

size of the input layer.  The encoder recreates the input images and trains the network using 

backpropagation the use of a loss function that is simply the N-dimensional Euclidian distance 

between the decoded image and the input image. This image generation technique is referred 

to as inverse graphics.  

DENSE CAPSULE NEURAL NETWORKS 

The Capsule neural network is a significant deviation from the popular CNN models, but 

the Dense capsule neural network deviates even further.  The initial convolutional layers in the 

Capsule network are replaced with Dense networks instead. Dense networks add forward 

feeding dense connections between layers. The addition of layer-bypassing dense connections 

reduces the number of parameters and helps with the diminishing gradient issue. The 

diminishing gradient occurs when backpropagation error is ‘diluted’ by the large number of 

layers in deep neural network architectures, causing weight adjustments to stop or slow 

dramatically[11].  These bypass layers are illustrated in Fig. 1. 

 

Given that the topology bypasses one or more layers, this allows high- and low-level 

feature granularities to be passed into the capsule layers which enhances the ability of the 

network to recognize features multiple levels of hierarchy.  This pairs nicely with the ability 

of Capsule networks to feed more information through the network layers 

 

 

 

 

 

 

 
Figure 1: Dense Network with Layer Bypass Connections 
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Assume that the dense network is composed of L layers, each implementing a non-linear 

transformation HL. This non-linear function can be a composite function of operations such as 

ReLU, or sigmoid.  Traditional   feed-forward   networks connect the output of the Lth layer as 

input to the (L+ 1)th layer. Instead, in a dense connection scheme, each layer is connected to all 

subsequent layers. Therefore, each Lth layer receives the feature-maps of all preceding layers 

x0,...,xL−1, as inputs. The formula: 

 

xL=HL([x0, x1,...,xL−1]) 

 

where [x0, x1,...,xL−1], refers to the concatenation of the feature maps from layers 0 through 

L−1, and xL is the output of later L.  To simplify implementation, these multiple inputs are 

concatenated into a single tensor[12].  As mentioned above, this dense layer is substituted for 

the CNN layers in the original Capsule network architecture.  For this implementation a 3-layer 

dense network architecture was deployed. 

DATASET 

The described networks were trained and tested with the open source pneumonia MNIST 

dataset, which is a component of the MedMNIST data[13].  This grayscale dataset is based on 

a 5,856 pediatric chest X-Ray images which have a range of sizes: (384x127) – (2,916x2,713).  

These 256 level grayscale source images have been cropped and resized to 28 by 28 pixels.  

The dataset consists of 5,332 training images and 524 test images. These images were classified 

by radiologists into normal or pneumonia categories.  The training set contains 1,835 normal 

and 3,497 pneumonia examples, while the test set consists of 135 normal and 389 pneumonia 

samples.   

 

 

 

IMPLEMENTATION 

Three open-source libraries: Tensorflow, Keras, and Sklearn, were used with the Python 

language to implement the Dense Neural Network. GPU acceleration was enabled on Kaggle 

where all training and tested iterations were performed. 

 

Figure 2: 28 x 28 X-Ray Images  
Pneumonia (left) Normal (right) 
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There was no data augmentation performed on this dataset. After training, the output of the 

decoder section recreates examples of the input images.  Generally, these recreations lack the 

clarity and sharpness of the original images, but this is an excellent way to visually review the 

progress and results of the network training. 

RESULTS 

The performance of the network was evaluated using the sensitivity, accuracy, and area 

under the curve (AUC) metrics. Sensitivity and accuracy are calculated using the following 

formulas: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 100% 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +  𝑇𝑁 + 𝐹𝑁
100% 

 

Where TP is the number of true positives, TN the number of true negatives, and FN is the 

number of false negatives, and FP the false positives. These values and their percentages are 

listed in the confusion matrix of Figure 2. The AUC, accuracy, sensitivity results are listed in 

Table 2. 

 

 
Figure 2: Confusion Matrix for Dense Capsule Network Results 

 

Table 2: Performance Metrics 

Metric 

AUC Accuracy Sensitivity 

0.997 98.7% 99.2% 
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AUC is calculated by determining the receiver operating curve (ROC) which is the area 

under the curved plot of the true positive rate (TPR) against the false positive rate (FPR) over 

the range of threshold settings. The ROC curve is depicted in Figure 3. 

 

 
Figure 3: Receiver Operating Curve 

 

Comparative results are listed in Table 3.  The AUC and accuracy numbers are compared 

to several of the popular CNN models, such as ResNet and Google AutoML Vision, as shown 

in Table 3.  The proposed Dense Capsule network method outperformed the accuracy of 

Google AutoML Vision, by 4.1%, and the original Capsule Network by 0.4%.  

 

Table 3: Comparison of Model Performance 

Comparison of Performance 

Network AUC Accuracy 

ResNet-18 (28) 0.944 85.4% 

ResNet-18 (224) 0.956 86.4% 

ResNet-50 (28) 0.948 85.4% 

ResNet-50 (224) 0.962 88.4% 

auto-sklearn 0.942 85.5% 

AutoKeras 0.947 87.8% 

Google AutoML Vision 0.991 94.6% 

Capsule Network 0.996 98.3% 

Dense Capsule Network 0.997 98.7% 

CONCLUSION 

Capsule networks have been demonstrated to be very accurate when applied to the 

classification of pneumonia in low-resolution x-ray images.  The pneumonia MNIST database, 

which is composed of 5,856 grayscale pediatric radiology images, was utilized for training and 

testing of the network architecture.  The performance of the original Capsule network can be 
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improved by replacing the convolutional layers with Dense network layers and demonstrated 

a classification accuracy of 98.7%.  These results exceed the accuracy of the average radiologist 

and show that Dense capsule networks could be used as a tool to verify human diagnosis, and 

potentially reducing healthcare costs. 
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